就爱字典>历史百科>四库百科>增修欧氏几何

增修欧氏几何

五卷,附四卷。清曹汝英(生卒年不详)撰。曹汝英,字粲三,广东番禺(今番禹)人。著有《直方大斋数学上编》十四卷(1903),《直方大斋数学上编附卷》二卷(1904),《直方大斋数学中编》四卷(1907),《算学杂识》十卷(1898),《普通数学教科书》六册(1906)。《增修欧氏几何》为介绍西方几何学的普及读物,此书五卷即欧几里得《几何原本》前五卷内容。在卷一的开头有一段文字,似为全书前言,曹汝英谈及增修之目的:“欧氏之书,既论各种之形兼言数理,则一切度皆赅无矣。然欧氏所论数理,词旨幽深,非初学者所当务急。故泰西学生之习欧几里得者,止习前六卷〔第五卷亦有不习者〕及第十一卷而已。其余各卷所论者姑舍,是又因书中间有奥晦之词,且不能容括今日新理,故又增修之,以期利便初学,意至善也。今不揣简陋,师其法,以辑引编,题曰《增修欧氏几何》。”在书中,曹汝英增加了大量“原书未有之题”,同时还对其作必要的删节。对于原书的“界说”、“公论”均作了改动。如直线界说:“诸点所引之方向处处相同,则所成之线为直线”;平面界说:“面内任取两点,若以两点为界之直线恒贴面上,则此面为平面。”徐光启、利玛窦的译本的平面界说为:“平面二面平在界之内”,显然不及曹汝英的界说通俗易懂。还有曹汝英的圆的界说:“圆为平面形,以一线为界,自界到圆之中处作直线俱等。”圆径与半径界说:“过圆心作直线两端抵周者为圆径,自圆心至圆周之直线为半径。”平行线界说:“两直线同在平面内将两端引长至无穷不相离亦不相遇为平行线”。从以上所引卷一的部分界说可知曹汝英为了利便初学,对原界说作了较大的改动,增加了不少解释性的语言。在徐、利译本中有“公论”十九条,而曹汝英本只有公理十二条,他说:“据徐译本,本应有公理十九条,唯后七条近日西国几何教科书皆删去不读,故此编亦止列十二条。”对徐、利译本的文字叙述加以改动,变为用符号和文字相结合的方式叙述。《增修欧氏几何》中引用的符号有:“=”,“∥”、“L”(直角)、“∠”(角)、“⊥”(加)、“”(减)、“”(平行四边形)……,但字母未引用,仍以甲、乙、丙、……子、丑……代替。另一重大改动是将书中原来的题目分为:“一为求作之题,名曰法题;一为求证之题,名曰理题”,“然无论何种题,皆同一体裁,知其体裁,则作几何题时自不忙乱。”曹汝英对原书的增修主要是在附卷中,他所增之题,虽然绝大多数为西方初等几何书中所有者,但对中国人却是新颖的内容。如附卷一第一款“反求法”(即逆推法):“若将题目所求之事权作已知,反推题目所设之事,或推前之所学有何义理,与所设之事相关,则名曰反求。当反求时或须征引旧题或须作图,必谨记之。俟推得所设之事,或推得相关之理,乃反其次序,而顺列之,即得正求之法。”曹汝英认为:“反求法虽不能谓之定法,然法题往往可用此法求之,亦聊胜于无法也。”并列举理、法各一题说明反求法的应用。当代中算史家李迪认为:“这是首次在中国的数学文献上见到的有关逆推法的详细文字记载。”在附卷三第十题是“西姆松线”:“圆内有切界三边形,若于圆界上任取一点作垂线与三边正交,或与三边引长正交,则三垂线之端必同居一直线内。”在证完此题后曹汝英加注:“上圆戊庚线,西人称为子点至甲乙丙形之鲜氏线,此题乃鲜姆逊所立,因以其名名此线也。”附卷四第五题是著名的“九点圆”问题:“三角形从三角至对边各作垂线相交于正心点,次将正心点至三角之线各两平分之,则所分三点及三垂线之端并原三角形各边中点必同居一圆之界。”在附卷一第九款和附卷三第五款专门讨论轨迹问题,在说明轨迹内容的基础上曹汝英给出了轨迹定义:“无论直线曲线,若线内诸点恒与所设情节相符,而线外之点皆不相符者,购此线名‘点之公界线’。”“求公界线之题,大率分(甲)(乙)两级作之”,先按条件作出“公界线何在”,再证“公界线内无论何点皆与所设情节相符”。以上所引用诸项,均系首次见于中文文献。值得注意的是,在卷五第三定义后曹汝英解释了“几何”,他认为:“几何二字有两解,其一即若干之谓,此人人知者;其一乃任何度之谓,此则稍不易明者”。对著名的第五公设他认为:“此条公理,后人皆以为非极浅显,益尚有更浅之法可证其必相遇也。故学者暂可不相会之”。实际上这是独立不可证明的,欧氏几何正是以这条公理为特征。亦可知曹汝英尚不知非欧几何已经出现。对《增修欧氏几何》作出深入研究的是当代中算史家李迪的《曹汝英〈增修欧氏几何〉初论》(载《数学史研究文集第四辑》)。李迪认为:“《增修欧氏几何》一书,尽管内容是很浅显的初等平面几何学,可是却包括了不少对当时中国来说是很新颖的问题和思想,在《几何原本》研究史上应适当提及。总的来看,曹汝英的工作还是有意义的,值得肯定。”《增修欧氏几何》的版本有清刻朱印本六册本。

猜你喜欢

  • 理学类编

    八卷。明张九韶(生卒年不详)撰。张九韶字美和,后以字行,《明史·宋讷传》附载张九韶传,即称张美和,清江(今属江西)人。元末累举不仕。明洪武三年(1370),荐举为县学教谕,迁国子助教,改翰林编修。致仕

  • 尚书说

    ① 二卷。清庄存与撰。此书所标出的《尚书》篇目,与其所著《尚书既见》不同,但二书体例相同,都是纯以议论的形式来谈义理。如庄氏于《泰誓》谓夏桀之残暴比不上商纣,伊尹七就之而后方去桀而归汤,伯夷、太公辟纣

  • 紫微杂记

    见《紫微杂说》。

  • 佘山人诗集

    四卷。明佘世亨(约1522年前后在世)撰。生卒年生平事迹均不详。卷首题岭南,不著郡邑。《广东通志》亦失载其姓名。欧大任《序》称其“在正德、嘉靖间,好游名山。去家数载而归,卜居粤秀山下。”粤秀为广州山名

  • 广陵思古篇

    二十九卷。清汪廷儒编纂。汪廷儒,仪征人。此篇共二十九卷,分为:卷一至卷十江都人,卷十一,卷十二甘泉人,卷十三至卷十五仪徽人,卷十六至卷二十高邮人,卷二十一至卷二十四兴化人,卷二十四至卷二十八宝应人,卷

  • 致曲图解

    一卷。清夏鸾翔(详见《洞方术图解》)撰。《致曲图解》是夏氏对圆锥曲线综合研究的成果。他首先介绍了西方按次数把代数曲线的分类:一次式为直线;二次式为圆、椭圆、抛物线和双曲线;三次式八十种曲线;四次式有五

  • 五经汇解

    题抉经心室撰。据考:这个人就是赵贤。赵贤,字子进,浙江钱塘人,光绪丙子年(1876)进士,曾任知县,分发江苏。生卒年不详。这本书本来称为《群经汇解》,由于考场上只考五经,故鸿文局的主人先索去五经刊印,

  • 类稿

    十卷。明涂几(约1497前后在世)撰。涂几,字寸约,又字孟规,宜黄(今江西)人。生卒年均不详。志尚高古,隐居著述。尝学于李存,究心象山之学。弘治初(1488)拟进时事策十九篇,因疾不果。几工词赋,得骚

  • 群经释疑

    六卷,清黄维清撰。黄维清,广东梅县人,生卒及生平事迹不详。这本书是在十三经注疏及清儒经说中未妥贴者的基础上进行的,单以俞樾的言论为主。俞樾的学说散见于所著的群书之中,而以《茶香室经说》为准。诸条大多引

  • 毛诗明辨录

    十卷。清沈青崖(生卒年不详)撰。青崖字艮思,号寓舟,浙江秀水(今浙江嘉兴县)人,官至河南巡道。青崖于《易》、《诗经》、《春秋三传》各有明辨录。此书名曰《毛诗明辨录》,实以《钦定诗经传说汇纂》为宗,论采